Zentrum fir Kardiovaskulare Genetik und Gendiagnostik
Das Genetikzentrum der Stiftung fiir Menschen mit seltenen Krankheiten

I

———
ZIHP

Chances and Challenges of High-Throughput
Sequencing of Mendelian Disorders

Meienberg J," Kopps A," Pliiss M,"2 Caspar S," Dubacher N,” Matyas G'-3

'Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Schlieren-Zurich, Switzerland, 2Institute of 4D Technologies, University of Applied
Sciences and Arts Northwestern Switzerland, Windisch, Switzerland, 3Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland

Contact: meienberg@genetikzentrum.ch, kopps@genetikzentrum.ch, matyas@genetikzentrum.ch

Time
& costs

Genomic positions /

S X Genetic counseling
eq. variants

- M _

High-throughput sequencing
Genomic positions (Panel, WES, WGS)
upto ~3billion 4| selection of the appropriate technique based on | [~ Days to weeks
(WGS) amount and quality of material, required read => Table 1
I depth, read length, errir rate, turnaround time Figures 2-5
Alignment and variant calling
Seq. variants Depending on hardware/software, sequence
up to ~3-4 million 9| variant type, and version of reference sequence —> Figures 5 & 6
(WGS) differences exist regarding accuracy, runtime, disk
footprint, data storage (and safety)
- V + Hours to days
) Variant filtering and interpretation
Seq. variants || Challenges regarding VUS, especially intronic,
~1500 (WGS) intergenic and splicing variants, and due to
potential monoallelic expression

Consequence of variant known?
Problem: function for ~50% of genes not known

yes{ noV/ _

Challenges Chances

Selection of appropriate sequencing method

Table 1. Comparison of widely used sequencing applications and platforms [1].

Short-read”

Long-read (real) WGS
ONT

Sanger TS WES PCR-free WGS PacBio
Read length Max: R . . Up to template  Up to template
(6p) 500-1000 300 180 180 longth’ longth?
Typical read Not v - v v v
M5 applicable 200-1000x 100x 30-60x 10-30x 10-30x
Raw-read
error rate (%) 0.001 0.1 0.1 0.1 10-15 12-17
Costs per Y . v v v v
sample ($)° 15-20 200-1000 500-1000 1000-2500 7000-20000 2750-8250
Disk footprint 0.1/ <1/ 613/ 90-400 / 45-130/ 75220/
(GB)/($)° <0.01 <0.1 <1 4-20 2-7 4-11
. Uniform, GC Coverage of repetitive and
High Hilgthe rre;‘:a‘:;pnmég;fy Additional sequence content homologous genomic regions,
Advantage accu?ac eﬂi’::ienc slho 1t information compared to independent detection of large SVs, discovery
Y mmamuﬁ'd time TS, cost-efficiency coverage of the of novel isoforms, DNA/RNA
enome base modifications, phasin
Incomplete coverage Incomplete coverage
due to high GC-content, due to high GC-content, Incomplete b .
Limitation throLuowh ut missing enrichment missing enrichment  coverage in regions H'gT;:Stlg;s:ogsgﬂﬁzﬁ)ce"or
ghp probes, and regions with probes, and regions with with mappability <1 ’ Y
mappability <1 mappability <1
Amplification
step prior to Yes Yes Yes No No No

aParameters of short-read sequencing are adapted to llumina MiSeq v3 system (TS) and lllumina HiSeq X Ten system (WES, WGS); ®Maximal
read length only limited by length of the fragments sequenced (template); °Costs calculated according to most frequently used sequencing systems,
library preparation kits, and reagents for the respective application, considering "typical read depth*;
using corresponding in-house and publicly-available data. Costs were calculated considering disk footprint for backup as well. For TS, disk footprint
was calculated for 100 average-sized genes with 2.5-kb coding region per gene; Avg, average; ONT, Oxford Nanopore Technologies; PacBio,

dCalculated for files like FASTQ, BAM, and VCF

Variant Research Pacific Biosciences; TS, targeted sequencing; WES, whole-exome sequencing; WGS, whole-genome sequencing; SV, structural variation.
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Figure 1. Challenges during the process from sequencing to diagnosis. FLA, fragment length analysis; MLPA, multiplex ligation-dependent = — — ———— — — *Designed target region of
probe amplification; Seq. variants, sequence variants; VUS, variants of unknown significance; WES, whole-exome sequencing; WGS, whole- EXon2(77% 6C) Agilent SureSelect
genome sequencing [1]. KLF2 v5+UTR [1-3].
A ] — B A Repetitive regions can be analyzed using long-read sequencing
hg19 # 9 SRS (~150-bp-read length)
el IS o e, -SRI TTTTTTTTEEREEERECCCCONNNNN S - - TTTI -
247 1167 " 2
= . v/ Reads ? ? ? i i ] ? ? ? .
& > LT [==T] s
H | E— oo I
[ I am Lani |
g oD | x— I
E 4 | E— m 1
EE
12790 o
§2
=
Y I
B

/
\

75 100 125 150 250 300 400

— Ma ability <1 Read length (bp)

Figure 3. Short-read sequencing of RefSeq coding exons. A, Percentags or number of exons with potentially affected (red) and unaffected
(gray) read depth alignment and/or variant calling in short-read whole-genome sequencing due to ambiguous 75-mer mappability (mappability
<1), the presence of common copy number variations (CNVs), and the difference between the GRCh37 and GRCh38 reference genomes (hg19
# hg38). B, Percentage of exons with mappability <1 (calculated using GEM version GEM-binaries-Linux-x86_64-20100419-003425 with m=2
like the UCSC mappability tracks). Y-chromosomal exons were excluded [1].

Selection of appropriate analysis pipeline
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Figure 6. Variant (SNP + indel) calling performance in single sample analyses as well as population (pop.) calling and trio analyses and run
time, disk footprint, and hardware specifications of four pipelines. Sensitivity/Recall (TP/[TP+FN]; TP = true-positive and FN = false-negative|
calls) and number of FN. WGS (lllumina HiSeq 2500, PE150, PCR-free) FASTQ files for NA12878 (NA12878 GIAB) and the Ashkenazim trio
(NA24143, NA24149, and NA24385) were downloaded (ftp-trace.ncbi.nim.nih.gov/giab, 300x) and downsampled to ~60x. In addition, we
analyzed our in-house NA12878 WGS data (NA12878 in-house) sequenced at ~60x (lllumina X Ten, PE150, PCR-free). For population calling,
the focal sample was analyzed together with 96 additional WGS data sets (sequenced like “NA12878 in-house”) from our Caucasian (Swiss)
patient cohort. The number of NIST-GIAB high-confidence benchmarking TP calls were 15,990 (NA12878), 15,345 (NA24143), 15,458
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Figure 4. Schematic representation of read alignment when using SRS compared to LRS. A, SRS is exemplified by 150-bp-short reads. Note that
repetitive/lhomologous regions longer than the read length cause ambiguous ahgnment i.e. mappability <1. B, LRS is exemplified by multi-kb-long|

reads. Note that long reads can cover unique DNA

mappability =1. LRS, long-read sequencing; Ref., reference genome; SRS, short-read sequencing [1].
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Figure 5. Copy number variation (CNV)
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