# Pioneering an efficient migration of 13,000 whole genomes: Catching up with the latest Human genome assembly 

Matthias Haimel ${ }^{1,2}$, Johannes Karten ${ }^{4}$, Bas Tolhuis ${ }^{4}$, Olga Shamardina ${ }^{1,2}$, NIHR BioResource ${ }^{3}$, Willem H Ouwehand ${ }^{1,2,3}$, Chris Penkett ${ }^{1,2}$, Kathleen Stirrups ${ }^{1,2}$, Ignacio Medina ${ }^{1}$, Nicholas W. Morrell ${ }^{1,2}$, Augusto Rendon ${ }^{5}$, Stefan Gräf1,2

UNIVERSITY OF
CAMBRIDGE ${ }^{1}$ University of Cambridge, UK; ${ }^{2}$ NIHR BioResource, UK; ${ }^{3}$ NHS Blood and Transplant, Cambridge, UK; ${ }^{4}$ GENALICE BV, The Netherlands; ${ }^{5}$ Genomics England Ltd, UK
mh719--ASHG@cam.ac.uk @MHaimel

## Background

The NIHR BioResource - Rare Diseases recruited 13,000 patients and relatives from 15 different rare disease projects over a 4 year period. The 50 participating NHS Trusts and international collaborators collected whole blood samples that were centrally processed following standard protocols. The wholegenome sequence (WGS) data were generated by Illumina to a depth of 30x coverage using PCR free methodology. Sequence and variation results were delivered to the high performance computing service for analysis and amount to 840TB of data.

## Genome Variation

Variation data from samples were quality controlled and checked against the recorded gender. 55 billion individual variants were incrementally loaded into a distributed analysis framework. The aggregated 348M single nucleotide variants (SNVs) and insertions / deletions (INDELs) were efficiently annotated and filtered for 170M high quality variants. Rare variants ( $<1: 1,000$ ) take up $88 \%$ (150M) of which 106K (0.07\%) are protein truncating.

## Research findings

Disease cohort specific analysis teams identified 718 disease causing variants in 680 patients. These findings were discussed in multi disciplinary teams (MDT) and evaluated for their pathogenicity. Based on the evaluation, research reports were returned to the NHS Trusts for further clinical testing in accredited laboratories.

## Transition to GRCh38

13 K samples were aligned to GRCh38 and 1 K samples aligned to GRCh37 for comparison by GENALICE using the same methodology. We quantified the increase in covered bases of the genome and the increased yield of variants between matching samples in GRCh37 and GRCh38. A common variant comparison in GRCh37 with the Non-Finnish European (NFE) gnomAD allele frequencies found a high correlation. Alignment and variant calling for GRCh38 was completed in 20 days using 10 compute nodes.

## Poster 1425F

 NIHR BioResource - Rare Diseases

## GRCh37 vs. GRCh38: Gain or pain?



Alignment of reads
Read alignment time increases linearly with the amount of data independent of the reference genome. Changing to GRCh38 showed an increase in the number of covered bases for each chromosome while reducing the number of unmapped reads.


Variant call increase In addition to the increase in covered bases, we found a gain of variants in GRCh38. Autosomal variants showed a change of $8.8 \%, 1.5 \%$ for SNVs and INDELs respectively.


## Quality metrics

We compared the variant calls from 1 K selected GRCh37 and GRCh38 samples with available public datasets to assess the quality. The transition / transversion (Ts/Tv) ratio was calculated and compared for different allele frequency bins. TOPMed was lifted back from GRCh38 to GRCh37, yet use was limited due to lack of available ethnic specific frequencies.


## Conclusion

Analysis of 13,000 whole genomes shows that GRCh38 delivers better coverage and significantly more variants without detriment to quality. Rapid realignment and calling at scale to match changing genome builds is feasible and beneficial. The NIHR RD Sequence Variation browser will become publically available for both GRCh37 and GRCh38 providing variant summary information through a fast interactive browser (IVA).

## References

NIHR BioResource - Rare Diseases

